

A Multi-Agent System for Facility Location Problems

Sathuta Sellapperuma PhD supervisor - Assoc. Prof. Dr. Algirdas Lančinskas, PhD) Year of start & end of the PhD (2023 - 2027)

Content

- Research Plan
- FLP and competitive facility location problems
- FLPs in Operational Research
- FLP Applications in Various
 Industries
- Classification of FLP

- Average Distance Factor
- FLP with Customer Behavioral Models
- Binary vs Proportional Models
- Customer Behavioral Models with ADF

Research Plan

	Dublication's title	Fulfilme	nt period	Natar	
		From	То	Notes	
1.	Review and analysis of scientific research related with the theme of doctoral thesis (in Lithuania and abroad):				
1.1.	Identifying the project specification and object of the dissertation research.	2023 y. IV quarter	2024 y. I quarter		
1.2.	Analysis of competitive facility location problems and their solution methods.	2023 y. IV quarter	2024 y. III quarter		
1.3.	Analysis of multi-agent systems and their application to facility location	2023 y. IV quarter	2024 y. II quarter		
2.	Prosecution of scientific research:				
2.1.	Formation of study methodology:				
2.1.1.	Formulation of the aim and objectives of the dissertation to identify quantitative and qualitative research methodologies of the problem	2024 y. IV quarter	2025 y. I quarter		
2.1.2.	Selection and description of methodologies	2024 y. IV quarter	2025 y. I quarter	 Below are the intially identified research methods for this study. further need to investigatesuitable methods. 1. Literature Review: 2. Conceptual Framework: 3. Research Design: 4. Data Collection: 5. Agent-Based Modeling: 6. Data Analysis Techniques: 7. Validation and Verification: 8. Ethical Considerations: 	

Goal

 The research studies supreme goal to create a robust Multi-Agent System (MAS) platform for dynamic facility location optimization, overcoming limitations of traditional techniques like static nature and inability to adapt to market changes.

Research Objective

- Enhance Facility Location Decision-Making Efficiency through a Multi-Agent System
- Develop Appropriate Agent Architectures and Communication Protocols to Solve FLP Issues
- Integrate all important stakeholders of FLP into the MAS application to get mutual benefits
- Evaluate performances of the MAS application Addressing Facility Location Challenges

Research Problem

- 1. How can **real-time** data and **dynamic variables** be effectively **integrated** into facility location decisions in dynamic and uncertain environments by a Multi-Agent System (MAS)?
- 2. How can facility location problems be addressed by practical solutions that integrate stakeholders' needs and enable adaptive decision-making processes provided by a MAS application?
- 3. How can **innovative** MAS approaches address the lack of effective solution methods for **dynamic facility location problems**, where demand points or facilities undergo changes over time?

?	? (2	?	
BR	R		? }	Z

Introduction - FLP

- Facility Location Problem is a critical aspect of operational management.
- It involves minimizing costs, improving customer satisfaction, and increasing profitability.
- Inefficient facility locations can result in excess costs throughout the facility's lifetime.

- Facility location significantly impacts revenue, costs, and customer service.
- Optimal facility location decisions are crucial for expanding market share and minimizing cost factor.

Classification of FLP

- Number of Facilities Single/Multi
- **Demand Points** Continuous/Discrete
- Capacity Capacitated/Un-capacitated
- **Time Dynamics** Static/Dynamic
- **Competition** Competitive/Non-competitive FLP
- Number of Objectives Single/Multi
- **Constrain** Constrained/Unconstrained

Vilnius University FLP for Entering (new) vs Expansion Firm

- Entering a firm into a new market involves identifying the most suitable locations for new facilities, such as retail stores or warehouses.
- Firm expansion involves optimizing the placement of additional facilities to enhance an existing network of locations.

Compositions of FLP

- In the practical world FLP meets with a combination of different problem characteristics as below. **Eg -:**
 - Discrete Competitive Facility Location Problems (DCFLP)
 - Discrete Competitive Facility Location Problems (DCFLP) for Entering Firm with - Single Objective
 - DCFLP for Firm Expansion (DCFLP/FE) –bi-objective
 - DCFLP/EF with constraints
 - Etc.

Competitive Facility Location Problems

- Competitive Facility Location Problems (CFLPs) focus on the strategic placement of facilities considering the presence of competitors.
- These problems analyze how facility locations can influence market share, customer capture, and overall competitive advantage.

Average Distance Factor

- The Average Distance Factor (ADF) is a metric used in facility location analysis to assess the average distance that customers must travel to reach a facility.
- It helps businesses understand accessibility and service efficiency. A lower ADF indicates better customer accessibility and potentially higher customer satisfaction, while a higher ADF can signify logistical challenges and increased transportation costs.
- By optimizing ADF, companies can enhance their competitive advantage by improving service levels and operational efficiency.

ADF for Binary and Proportional Model

• Binary Model

- Customers choose the nearest facility deterministically.
- Lower ADF means better coverage and higher customer satisfaction.
- Proportional Model
- Customers choose facilities probabilistically, with choices weighted by distance.
- A lower ADF increases the likelihood of customers choosing nearby facilities.

- Importance of ADF
- Evaluate facility distribution and coverage.
- Optimizes location decisions for better customer service and operational efficiency.
- Helps in strategic planning for public services, retail networks, and logistics by minimizing customer travel distances.

Average distance factor with square vs University Circular shapes

1. State area is given, and for a square, the side length $m{s}$ can be calculated as:

$$s = \sqrt{
m Area~(km^2)}$$

2. The diagonal of the square is $Diagonal = s \times \sqrt{2}$, and the maximum distance from the capital would be half of this diagonal:

Max Distance
$$=rac{s imes\sqrt{2}}{2}$$

3. This distance is then treated as the "average distance factor."

Circular Area: For a circular shape, the distance from the center to the edge (i.e., the radius) is given by the formula $r = \sqrt{\frac{Area}{\pi}}$.

Average Distance Factor Square vs Circular Comparison

Vilnius University

Results Discussion – ADF with India stateversity population dataset

- Average factor can define location identity over a given area.
- circular location could be given law average distance factor that square option under most of the time.
- Further ADF can be used for distance factors for customer behavioral models.

Customer Behavior Models in Facility Location Problems

Vilnius University

- Customer Behavior Models (CBM) play a crucial role in facility location problems as they help in
 - understanding how customers behave
 - make decisions regarding their choice of facilities.
- Main Classifications of CBM for FLP
 - Binary Model
 - Partially Binary Model
 - Proportional Model (Huff Model)
 - Pareto-Huff Model

Implication of Binary and Proportional University Models over data set

Country

Results and Discussion

- The binary model highlights where new hotels outperform existing ones.
- The proportional model offers a balanced view of customer preferences.

Binary and Proportional model implementation within Average Distance Factor

Vilnius University

Open new hotel – Average Distance Factor - Binary Model - Lithuania

Data Set – Data set with Lithuania hotels. each city consists of many hotels with GPS coordinates and city area, population etc.

	cityName	HotelName	Мар	Population	Area (sq km)
1	Alytus	Dzukija Hotel	54.39582 24.04582	51353	48
2	Alytus	Hotel Ode	54.39784[24.03141	51353	48
3	Alytus	Hotel Senas Namas	54.39918 24.0462	51353	48
4	Alytus	Hotel Vaidila	54.39617 24.0499	51353	48
5	Alytus	Guest House Linas	54.39482 24.04129	51353	48
6	Anyksciai	Keturi Kalnai	55.52047 25.11584	10353	17.49
7	Anyksciai	Nykscio Namai	55.52059 25.1156	10353	17.49
8	Anyksciai	Spa Vilnius Anyk⊡ciai	55.51022 25.08501	10353	17.49
9	Anyksciai	Gradiali Anyksciai	55.49315 25.24346	10353	17.49
10	Anyksciai	o Turizmo Sodyba Geras	55.641876 25.273851	10353	17.49
11	Anyksciai	Pusu Takas	55.59769 25.05069	10353	17.49
12	Anyksciai	Helsinkis	3359 25.0925102233887	10353	17.49
13	Anyksciai	Sodyba Tarp Liepu	55.6417 25.26802	10353	17.49
14	Anyksciai	Day & Night	55.52544 25.10987	10353	17.49
15	Anyksciai	Raganu Nameliai	55.508 25.11261	10353	17.49
16	Anyksciai	Broniaus Sodyba	55.74189 25.45568	10353	17.49
17	Anyksciai	Duvienes PaDiure	55.52811 25.28223	10353	17.49
18	Anyksciai	Aitvaras	\$6777[25.132682800293	10353	17.49
19	Anyksciał	Nijole ir Algimantas	3027 25.1109180450439	10353	17.49
20	Birzai	Tyla Hotel Birzai	56.1847[24.76618	12740	16.35
21	Birzai	anti viesbutis-restoranas	56 19685124 7571	12740	16.35

Average Distance factor - Square vs Circular

Attractiveness for New Location - Binary Model – (Considering Average Distance factors)

Vilnius University

City Name

Attractiveness for New Location – Binary/Proportional Model – (Considering Average Distance factors)

Vilnius University

Results and Discussion

- The binary model is best for sharp, clear decisions, while the proportional model offers more stable, refined insights.
- Circular models may better capture city layouts for irregularly shaped cities, influencing attractiveness outcomes.

Multi-Agent System

- Multi-agent system (MAS) is a **core area of modern artificial intelligence** and their discipline.
- MAS is a subfield of **distributed Artificial Intelligence**.
- Since the MAS includes **multiple decision-making agents (computer applications)** in the shared environment, all those agents can be integrated and compromised to fulfill common goals.
- MAS can solve problems in a **distributed manner**.

MAS Architecture for FLP Agent, Modules and Sub-Systems

Thank you