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Introduction
Collagenous colitis (CC) is a form of microscopic colitis (1), an inflammatory disease
of the large bowel that causes chronic watery diarrhoea, abdominal pain, faecal
incontinence, nightly defecation, and weight loss, resulting in a significantly
impaired quality of life (2,3). Incidence of MC has increased significantly during the
past decades in some countries and the main reason for this increase is thought to
be an enhanced disease recognition (4). The diagnosis of MC is challenging as it
can only be diagnosed upon histological examination of colonic biopsies taken
from normal or near normal appearing mucosa (1). Histological interpretation of
biopsies involves subjective evaluation leading to inter-rater variability
discrepancies in diagnosis and treatment plan. Deep learning-based assistance
system can objectivise diagnostic key feature selection leading to minimisation of
inter-rater variability and improvement of diagnostic accuracy.
The aim of this study was to develop the method and algorithm for robust
segmentation of light microscopy images of histological specimen slides (tissue
slides) emphasizing and estimating area of key diagnostic features of CC.
Development of machine learning based segmentation algorithms requires large
annotated training datasets and preparation of it is time consuming hand-work for
the experts. We decided to train our algorithm on just roughly annotated data
trying to reach the desired precision of segmentation applying superpixel
technique.

Methods
Histological specimen imaging. Histological specimen were fixed with
formalin, embedded in paraffin, cut into 3 µm sections, and stained with
haematoxylin and eosin (H&E) for histological examination. Histological
patient specimen images (10 patients, ~ 60 images per patient) were taken
using OLYMPUS IX71 light microscope (x20 magnification) equipped with Q
IMAGING EXI aqua camera at (1392 x 1040 px.) resolution.
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Image preprocessing. Image pixel values were normalized in RGB colour
space by histogram of empty tissue-less area alignment using earlier
elaborated algorithm described (5).
Experts roughly annotated image areas, indicating ones containing thickened
subepithelial collagen layer as the disease class among the others containing
the rest of the tissue indicated as normal class.
Superpixel technique using Simple Linear Iterative Clustering algorithm (6)
was used for initial segmentation of the images. One thousand superpixels
was chosen as optimal ammount for image split into areas with maximal
similarity. Superpixels falling within the detected backround area of the
image (non-tisue area) were ignored.
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The number of disease class
superpixels in the training set
was significantly smaller than
the number in normal ones.
So, the training set was
formed of all disease class and
the same ammount of
randomly selected normal
class superpixels
(n1=n2=18761). The whole set
was splitted into Training,
Validation and Testing parts
according proportions: 70%,
20% and 10% respectively.

Algorithm was trained on
personal computer with AMD
Ryzen Threadripper 3970X 32-
Core, 3.70 GHz processor and
128GB of RAM. The training
process with data shuffling in
every-epoch took ~30 min.

The example of histological image with detected 
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Algorithm training results: The algorithm segmentation quality was estimated by count of correctly
segmented thickened subepithelial collagen areas, confirmed by the Expert. The algorithm showed 0.807
accuracy, 0.801 sensitivity and 0.813 specificity.

The general idea of method
was to classify histology
image superpixels according
the concatenated pixel value
histograms in R, G and B
planes into disease and
normal class. Subsequent
connection of the same class
superpixels gives potential
areas of thickened
subepithelial collagen – the
key-feature to diagnose
collagenous colitis. The result
was evaluated by the experts
in aim to correct parameters
of the algorithm.

Conclusions:
The elaborated segmentation algorithm could be used for assisted diagnostic process emphasizing areas
with candidate key features for identification of collagenous colitis.
The training set of images with only roughly annotated areas of key-features of colagenous colitis is
suitable for traiining of the algorithm;


