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Introduction
The integration of artificial intelligence (AI) into edge computing has en-
abled resource-limited devices like smartphones, wearables, and IoT systems
to perform real-time processing without relying on cloud infrastructure. This
advancement is critical for applications such as AI-based virtual eyewear mea-
surement, which depends on accurate eyeglass detection for virtual try-ons
and facial recognition. However, deploying deep learning models on low-power
devices poses challenges, requiring careful optimization to balance accuracy
and efficiency.

Aims and Goals
The study aims to optimize CNNs for eyeglass detection on low-power devices
by training various architectures on a prepared dataset. We systematically
explored model size and post-training optimizations to assess their impact on
accuracy and inference time.

Main objectives:
• Train a variety of convolutional neural network (CNN) architectures uti-

lizing different Keras backbones to identify the most effective configu-
rations.

• Assess the optimized models on low-power platforms to evaluate real-
world applicability.

• To reveal the trade-offs between accuracy and inference time across dif-
ferent model complexities..

Methods
For the experiments, the FFHQ (Flickr-Faces-HQ) dataset with 16,000 di-
verse, high-quality images was used to enhance model generalization for vari-
ous facial features and eyeglass styles. Bounding boxes were labeled as [xmin,
ymin, xmax, ymax]. An example dataset is shown in Figure 1.

Figure 1: Example of FFHQ dataset

CNN models were trained using Keras-based feature extraction layers, as
shown in Figure 2. Training parameters included an input size of 384×384,
a batch size of 64, 200 epochs (500 steps per epoch), and a learning rate
decaying from 0.002 to 0.0001. The dataset was split into 70% for training
and 30% for testing.

Figure 2: Model architecture block diagram

• Model Deployment: Converted Keras models to TFLite for optimiza-
tion, reduced size and computational demands.

• Quantization Methods:
– Float16 Quantization: Convert model weights to 16-bit floats.
– Dynamic Range Quantization: To 8-bit integers.
– Full Integer Quantization: Converted weights and activations

Results
Experiments were performed on two systems:

• Raspberry Pi 5: Featuring a quad-core ARM Cortex-A76 CPU.
• NVIDIA Jetson Orin Nano: Featuring a quad-core ARM Cortex-A57

MPCore CPU.

Figure 3: Model architecture block diagram

During the experiment, key metrics were measured, including model size
Figure 3, average IoU, and inference time Figure 4.

Figure 4: Model architecture block diagram

Conclusions
• Quantization Techniques: Full integer optimization reduced model

size by up to 75%, enabling deployment on low-power devices.
• MobileNet Models Excel: Achieved the best speed-accuracy trade-

off with full integer quantization.
• Edge Computing Implications: Demonstrated feasibility of deploy-

ing high performance models in resource-limited environments for appli-
cations such as virtual try-ons and IoT systems.

• Future Directions: Explore model pruning and knowledge distillation
to enhance efficiency and generalize to other object detection tasks.
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