
Optimizing Deep Vision Models for Eyeglasses Detection in
Low-Power Devices

Henrikas GIEDRA, Dalius MATUZEVIČIUS
E-mail: {henrikas.giedra | dalius.matuzevicius}@vilniustech.lt,

Department of Electronic Systems, Vilnius Gediminas Technical University (VILNIUS TECH)

Introduction
The integration of artificial intelligence (AI) into edge computing has en-
abled resource-limited devices like smartphones, wearables, and IoT systems
to perform real-time processing without relying on cloud infrastructure. This
advancement is critical for applications such as AI-based virtual eyewear mea-
surement, which depends on accurate eyeglass detection for virtual try-ons
and facial recognition. However, deploying deep learning models on low-power
devices poses challenges, requiring careful optimization to balance accuracy
and efficiency.

Aims and Goals
The study aims to optimize CNNs for eyeglass detection on low-power devices
by training various architectures on a prepared dataset. We systematically
explored model size and post-training optimizations to assess their impact on
accuracy and inference time.

Main objectives:
• Train a variety of convolutional neural network (CNN) architectures uti-

lizing different Keras backbones to identify the most effective configu-
rations.

• Assess the optimized models on low-power platforms to evaluate real-
world applicability.

• To reveal the trade-offs between accuracy and inference time across dif-
ferent model complexities..

Methods
For the experiments, the FFHQ (Flickr-Faces-HQ) dataset with 16,000 di-
verse, high-quality images was used to enhance model generalization for vari-
ous facial features and eyeglass styles. Bounding boxes were labeled as [xmin,
ymin, xmax, ymax]. An example dataset is shown in Figure 1.

Figure 1: Example of FFHQ dataset

CNN models were trained using Keras-based feature extraction layers, as
shown in Figure 2. Training parameters included an input size of 384×384,
a batch size of 64, 200 epochs (500 steps per epoch), and a learning rate
decaying from 0.002 to 0.0001. The dataset was split into 70% for training
and 30% for testing.

Figure 2: Model architecture block diagram

• Model Deployment: Converted Keras models to TFLite for optimiza-
tion, reduced size and computational demands.

• Quantization Methods:
– Float16 Quantization: Convert model weights to 16-bit floats.
– Dynamic Range Quantization: To 8-bit integers.
– Full Integer Quantization: Converted weights and activations

Results
Experiments were performed on two systems:

• Raspberry Pi 5: Featuring a quad-core ARM Cortex-A76 CPU.
• NVIDIA Jetson Orin Nano: Featuring a quad-core ARM Cortex-A57

MPCore CPU.

Figure 3: Model architecture block diagram

During the experiment, key metrics were measured, including model size
Figure 3, average IoU, and inference time Figure 4.

Figure 4: Model architecture block diagram

Conclusions
• Quantization Techniques: Full integer optimization reduced model

size by up to 75%, enabling deployment on low-power devices.
• MobileNet Models Excel: Achieved the best speed-accuracy trade-

off with full integer quantization.
• Edge Computing Implications: Demonstrated feasibility of deploy-

ing high performance models in resource-limited environments for appli-
cations such as virtual try-ons and IoT systems.

• Future Directions: Explore model pruning and knowledge distillation
to enhance efficiency and generalize to other object detection tasks.

VILNIUS
TECH
Department of Electronic

Systems

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No S-ITP-24-12.


