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Introduction
Dynamic artificial neural networks (DNN) are increasingly used for time-
varying data processing, yet their explainability remains a challenge. This
study investigates small-scale DNN, particularly Long Short-Term Mem-
ory (LSTM) and Finite Impulse Response Neural Networks (FIRNN), fo-
cusing on their explainability in human activity classification tasks. By
combining Layer-wise Relevance Propagation (LRP) and Fast Fourier Trans-
form (FFT) techniques, this research provides complementary insights into
DNN decision-making mechanisms.

Aims

The goal of this study is to enhance the understanding of
decision-making processes in small-scale dynamic neural net-
works through explainability techniques.

The main objectives:
a) evaluate the classification accuracy and complexity of FIRNN and LSTM

used for a selected human activity classification task;
b) employ the LRP technique to investigate the contribution of time-varying

signal samples to FIRNN and LSTM decisions;
c) employing the FFT technique to gain insights into input signal spectral

characteristics and their possible connection with FIRNN filter order or
LSTM hidden cells’ number.

DNN Architectures and Training
The accelerometer magnitude data (1,710 s captured human activities – walk-
ing and running), was used to train and evaluate FIRNNs and LSTMs with
three-layer 1-(m)-1-1 architectures, here m ∈ [1, 100] – filter order or cells’
number that was varied. The 100 training attempts (stopping when validation
error increases) per configuration resulted in 10,000 trained DNNs.

Illustration of synapses in the hidden layer of DNNs

The highest accuracy reaching DNNs per configuration were considered.
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The highest accuracy of DNNs varying filter order or hidden cells’ number

LRP Analysis
The highest accuracy reaching FIRNN and LSTM configurations (“A”) were
used for LRP analysis. For each localized peak or valley, the number of sam-
ples associated with these specific features was calculated to determine how
much input data contributes to the DNN’s decision-making process.
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Example of the relevance for the highest accuracy reaching DNNs superimposed on a nor-
malized input signal and classification labels

Frequency Analysis
The FFT was applied to the input signal, sampled at 100 Hz, to analyze its
frequency composition. Key frequency ranges were identified, corresponding
to the periodic components most relevant to the DNN’s performance.
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Results
• FIRNN: 99.99% accuracy, 85 binary multiplications, 85 binary addi-

tions, 2 activation functions.
• LSTM: 99.62% accuracy, 6,080 binary multiplications, 6,004 binary ad-

ditions, 191 activation functions.
• LRP analysis: 9 samples are the most relevant for class separation.
• Frequency analysis: key freq. ranges 8.5 Hz, 26.5 Hz, and 42 Hz.

Conclusions

1. FIRNN achieves highest accuracy with significantly lower
complexity, requiring 71 times less additions/multiplications
and 95 times less activation functions compared to LSTM.

2. LRP analysis shows that both DNNs rely on the similar
width sample size for class transitions, but their use (rele-
vance) differs depending on the DNNs type.

3. Frequency analysis confirms that only in FIRNN case fil-
ter order can be inferred from the input signal magnitude,
avoiding the need for an extensive full search of the highest
accuracy reaching structure and enabling granuality (A–C key
frequency ranges) in the selection of the FIRNN complexity.
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