

APPLICATION OF MACHINE LEARNING TECHNIQUES FOR LITHUANIAN ENTERPRISE CLUSTERING

MOTIVATION

- Identification of enterprise activity codes stands as a crucial To apply clustering methods to help task enabling establishment or renewal of databases and making informative decision about economic tendencies.
- Gathered insights allow for informative decisions about taxes, needed state-aid and competition analysis.

GOAL

identification of the economic activities using descriptions, utilizing predefined NACE codes

RESEARCH WORKFLOW

WORDCLOUD

gaminiai konsultacijos patalpų baldų ^{auk} a vidau darbu lo įranga 🕫 sistem dantų kliento metalo darbo klientų medžiago oro darbų gamyba prekiųvalymas d ektų mų valdymo remonto stema i aukščiausio stema i celu po paslaugas pamintoju paslaugas remonto sistema kokybė Ž m o sł projektu **namy** transporto apskaitos dalys ma įrengimas remonta au pasi poreikiu **UUIId** maisto priežiūro preke pardavima priežiūro preke produktų klientam darbai sistemų produktai paslaugų statybos veiklos lauko dirba

TOPIC MODELING

BIGRAMS

DATASET DISTRIBUTION

AUTHORS:

Eimantas Zaranka eimantas.zaranka@vdu.lt

Dovilė Kuizinienė dovile.kuiziniene@vdu.lt

Tomas Krilavičius tomas.krilavicius@vdu.lt

Co-funded by the European Union

Sust/In Liv Work

CLUSTERING RESULTS

CARD

CENTRE FOR APPLIED RESEARCH AND DEVELOPMENT

The best results for each clustering model, where silhouette score > 0

Embeddings	Feature Selection	Clustering Algorithm	# of clusters	Silhouette score	DB Index	CH Index
<u>LaBSE</u>	<u>UMAP</u>	<u>Kmeans</u>	82	0.3764	0.8399	<u>13408.4</u>
LaBSE	UMAP	Agglomerative	82	0.3751	0.8356	12552.3
LaBSE	UMAP	Gaussian Mixture Model	20	0.3351	0.8424	8011.0
<u>Word2Vec</u>	PCA	<u>Mean Shift</u>	14	0.4614	0.8584	3884.9
<u>LaBSE</u>	<u>UMAP</u>	BIRCH	31	0.3495	<u>0.6718</u>	9560.3
Word2Vec	AUTOENCODER	Deep Embedding Clustering	20	0.0679	2.0577	2666.2

DB Index - Davies-Bouldin Index, CH Index - Calinski–Harabasz Index

CONCLUSIONS

- The total of 195 experiments were conducted across all embeddings and feature selection combinations for 4 different levels of NACE.
- Experiments showed that for embeddings LaBSE and Word2Vec and for feature selection principal component analysis and UMAP are the most promising.
- Most suitable clustering algorithms are KMeans, Agglomerative clustering and. Mean Shift clustering.